Modeling the X-ray emission from Tycho SNR

Important physical processes in young SNRs

Daria Kosenko

Sternberg Astronomical Institute

SN Ia — thermonuclear explosion of WD

Elements distribution in SN ejecta

W7 (Nomoto, 1984) — parametric model

Elements distribution in SN ejecta

Testing SN Ia models

Explosion model

Testing SN Ia models

Explosion model

HydroCode

Testing SN Ia models

Under the Explosion model

Under the Explosion

Testing on lightcurves

Sedov stage — young SNR

Testing on X-ray from young SNRs

430 years, 8', 1.5-3 kpc

Testing on X-ray from young SNRs

430 years, 8', 1.5-3 kpc

SUPREMNA: 1D radiative hydrocode

- energy losses
- NEI hydrodynamic evolution: self-consistent calculation
- thermal conduction
- non-Coulomb energy exchange between electrons and ions

parameterized

SUPREMNA: 1D radiative hydrocode

- energy losses
- NEI hydrodynamic evolution: self-consistent calculation
 - in each mesh, at every time step for all ions of 15 elements
 - processes: collisional ionization, autoionization, photoionization, dielectric ionization, charge transfer
- thermal conduction
- non-Coulomb energy exchange between electrons and ions

SUPREMNA: 1D radiative hydrocode

- energy losses
- NEI hydrodynamic evolution: self-consistent calculation
- thermal conduction
- non-Coulomb energy exchange between electrons and ions

parameterized

SUPREMNA: 1D radiative hydrocode

- energy losses
- NEI hydrodynamic evolution: self-consistent calculation
- thermal conduction $[C_{kl}]$
- non-Coulomb energy exchange between electrons and ions [q]

parameterized

Tycho SNR (XMM-Newton) — spectrum

Decourchelle et al. (2001)

Tycho SNR (XMM-Newton) — brightness profiles

Decourchelle et al (2001)

Fe XVII - dashed; Fe K -solid

Collisional inner-shell ionization

underionized plasma

Collisional inner-shell ionization

underionized plasma

Spectrum fitting (W7)

$ ho_{ m CSM},{ m g/cm}^{-3}$	1.8×10^{-24}
q	0.93
$C_{ m kl}$	0.0085
$N_{\!H},{ m cm}^{-2}$	3.7×10^{21}

Distance to the SNR	
spectrum	1.3 kpc
brightness profiles	3.1 kpc

Brightness profiles (W7)

$ ho_{ m CSM},{ m g/cm}^{-3}$	1.8×10^{-24}	
q	0.93	
$C_{ m kl}$	0.0085	
$N_{\!H},{\sf cm}^{-2}$	3.7×10^{21}	

Distance to the SNR	
spectrum	1.3 kpc
brightness profiles	3.1 kpc

Conclusions

- Estimations of a SNR parameters, distance measurements
- W7 produces a "good" fit to the observations (was rejected)
- Fe K centroid, distance to the remnant ⇒ explosion model for Tycho SN should be less energetic compared to W7
- Once distance is not controversal ⇒ correct model

more models to go...
more SNRs to go...

Conclusions

- Estimations of a SNR parameters, distance measurements
- W7 produces a "good" fit to the observations (was rejected)
- Fe K centroid, distance to the remnant ⇒ explosion model for Tycho SN should be less energetic compared to W7
- Once distance is not controversal ⇒ correct model

more models to go... more SNRs to go...